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1 Introduction
We aim to promote understanding of the
phenomenon of adversarial examples by analyzing a
trade-o� between accuracy and adversarial
robustness in an idealized se�ing and under the
infinite data assumption.
I The classifier with the highest standard accuracy provably di�ers from

that with the highest adversarial robustness, which is obtainable by
adversarial training. Between the standard optimal classifier and the
adversarially optimal classifier, we can find classifiers that are optimal in
the sense of linear combinations of these two goals.

I The distance between the standard and the adversarially optimal decision
hyperplanes can be both lower and upper bounded, and both bounds are
proportional to the a�ack radius ε. Specifically, under `∞-a�ack the
distance is Θ(

√
dε) with d the dimensionality.

I Di�erent training strategies, including standard training, adversarial
training, and data-randomized training favor accuracy and adversarial
robustness di�erently. The in-between classifiers that balance the
trade-o� can be obtained by data-randomized training with di�erent
randomization parameters.

I For some data distributions, it is possible to improve the adversarial
robustness of a classifier significantly at the price of a slight accuracy
decrease.

3 A Trade-o� between Accuracy and
Adversarial Robustness

Accuracy and Adversarial Robustness Lead to
Di�erent Optimal Classifiers
Theorem 1. Consider the linear classification task on the data set with
two classes following d-dimensional Gaussian distributions Nd (µ1, σ

2
1I)

and Nd (µ2, σ
2
2I) respectively, with µ1 6= µ2. If σ1 6= σ2, then the standard

optimal decision hyperplane W ? and the Bεp-robust optimal decision
hyperplane W̃ ? are two di�erent parallel hyperplanes in Rd. Moreover, for
any λ ∈ (0,+∞),

W ?
λ = arg min

W
β(W ) + λβ̃(W )

yields a decision hyperplane lying between W ? and W̃ ? and parallel to
them.

Accuracy and Adversarial Robustness Lead to
Di�erent Optimal Classifiers
Theorem 2. Let e12,∞ = (µ2 − µ1)/‖µ2 − µ1‖∞ be the `∞ norm unit
vector in the direction of µ2 − µ1. Suppose e12,∞ is uniformly distributed on
an `∞ unit sphere. Then under `∞-a�ack, the average distance between the
standard optimal decision hyperplane W ? and the Bε∞-robust optimal
decision hyperplane W̃ ? has a lower bound

Ee12,∞
∥∥W̃ ∗ −W ∗∥∥

2 >
σ2 − σ1
σ2 + σ1

d + 2
3
√
d
ε.

Theorem 3. Under `∞-a�ack, the distance between the two optimal
decision hyperplanes has an upper bound∥∥W̃ ∗ −W ∗∥∥

2 6
σ22 + σ21
σ22 − σ21

√
dε.

2 Our Se�ing and the Definitions
We consider a simple yet useful se�ing: binary classification over two
spherical Gaussian distributions.

Definition (Standard Error). Let P be a distribution on Rd × {±1}.
Then the classification error for a classifier f : Rd → {±1} is defined as
β := P(x,y)∼P [f (x) 6= y].

Definition (Bεp-Robust Classification Error). Let P be a
distribution on R× {±1}. For x ∈ Rd, we denote the ε-neighborhood
under `p-distance by Bεp(x) =

{
x′ ∈ Rd

∣∣‖x′ − x‖p < ε
}

. Then the
Bεp-robust classification error for a classifier f : Rd → {±1} is defined as
β̃ := P(x,y)∼P

[
∃x′ ∈ Bεp(x) : f (x′) 6= y

]
.

4 Balancing the Trade-o�
Adversarial Training
The adversarial training that we consider is to replace x by x′ ∈ Bεp(x) as

min
θ

Ex max
x′∈Bεp

`(θ; x′).

Bεp adversarial training results in the Bεp-robust optimal decision
hyperplane W̃ ? when the amount of data approaches infinity. The
adversarial training, as defined above, corresponds to λ =∞, and leads to
the most robust classifier given infinite data.

Data-Randomized Training
Data-randomized training refers to replacing x by x + δ during training as

min
θ

Ex`(θ; x + δ), (1)

where δ is a random perturbation drawn from a certain distribution.
We show that for data-randomized training, λ is controlled by the
randomization parameter δσ, and can take any value between [0,+∞] as
δσ varies.

5 Numerical Case Studies
Between the two minimum points, the curve of standard error declines
gradually while the curve of adversarial error declines steeply. This is a
demonstration of the cases where adversarial robustness can be improved
significantly at the price of a slight accuracy decrease.

(a) σ1 = 3, σ2 = 6 (b) σ1 = 2, σ2 = 18

The change of W ?
λ becomes slow a�er λ exceeds a certain value. Note that

in these cases this value is quite small (approximately 0.25), that is, even
for an objective assigning more weight on accuracy than robustness, it
still yields a decision hyperplane that is very close to the adversarially
optimal decision hyperplane W̃ ?.

(a) σ1 = 3, σ2 = 6 (b) σ1 = 2, σ2 = 18


